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THREE-DIMENSIONAL THERMOELASTIC PROBLEMS OF PLANES
1

OF DISCONTINUITIES OR CRACKS IN SOLIDS

by
M. K. Kassir2 and G. C. Sih3
Abstract
Presented in this paper is a general formulation of the three-
dimensional thermoelastic equations (uncoupled) for problems involving
crack-like imperfections or planes of discontinuities of some kind in
solids. Harmonic functions are constructed from which the stresses and
displacements may be obtained. The thermoelastic potential for symmetric
distribution of temperatures on the crack surfaces is related to Boussi-
nesq's three-dimensional logarithmic potential for a disk in the shape of
the crack. The mass density of the disk is found to be proportional to
the prescribed temperature gradient normal to the crack plane. As an
application of the theory, closed form solutions, in terms of complete
and incomplete elliptic integrals of the first and second kind are given
for a flat elliptical crack whose surfaces are exposed to uniform temper-
atures and/or temperature gradients. The possibility of extending the
Griffith-Irwin theory of fracture to cracks in thermal environments is

also discussed.

1The results presented in this paper were obtained in the course of re-

search carried out under Contract Nonr 610(06) with the Office of Naval

Research, United States Navy. This paper will be published in the Pro-

ceedings of the Third Southeastern Conference on Theoretical and Applied
Mechanics.

2Instructor of Mechanics, Lehigh University, Bethlehem, Pennsylvania.

3Professor of Mechanics, Lehigh University, Bethlehem, Pennsylvania.




Notation
a, b

f, g, h
k, k'

kj(j=1,2,3)
q(x,y)

QysM;0P4505 (3=1,2,3)

r
S5 t

U, V, W
UssYo
Xy ¥s 2
A, 8, C

E(k), K(k)

W,

F, G, H
I

Q(s)

Q

0
R, R0
T(X,Y,2Z)

To

Z

Es Ny T

A(s)

Semi-axes of elliptical crack.
Harmonic functions of x, y, 2

ArgumenEs of comp]ete elliptic integrals,
k2 + k'

Stress-intensity factors.

Density distribution.

Constants.

Distance normal to crack border.

Dummy variables.

Rectangular components of displacement.
Displacements on crack surface.
Rectangular coordinates.

Multiplying constants

Complete elliptic integrals of s=2cond and
first kind associated with k, respectively.

Potential functions of x, y, z
Integral.

Function of s.

Uniform temperature gradient.
Length.

Temperature distribution.

Constant temperature.
..~|_ 12.)

Coefficient of thermal expansion.
Angle subtended by r and x-axis.
Ellipsoidal coordinates.

Arbitrary function.
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u Shear modulus.

v Poisson's ratio.

P Ratio of r t3 a.

Oxxs0yys0zz Normal components of stress.

Ty Tyz? zx Shear components of stress.

é Angle in parametric equation of ellipse.
¢ Vector potential.

) Thermoelastic potentials.

Tl kel Scalar potentials.

A, Q Functions in skew-symmetrical problems.

Introduction

While the solution of problems of thermal stress for thin plates and
long cylinders has received considerable attention in the past4, compara-
tively little work has been done on the problems of three-dimensional
theory of thermoelasticity for solids containing imperfections. It is
known that when a temperature field is disturbed by the presence of cracks
or flaws, there is high elevation of the local temperature gradient accom-
panied by thermal stress. Thermal disturbances of this kind in some
cases cause crack propagation resulting in serious damage of structural
members. Hence, solutions to thermoelastic problems of cracks have imme-

diate practical value in fracture mechanics.

The existing literature on the three-dimensional asnects of thermal

stress around cracks has been limited to a few publications. Moreover,

4An ﬁxtensive reference of papers on thermoelasticity may be found in
V.2l

-3 -




previous works are confined to axially symmetric problems dealing with the
“penny-shaped" crack. Such a restriction is mainly due to the mathematical
difficulties of this class of problems. By the method of dual integral
equations in the Hankel transforms, Olesiak and Sneddon [3] investigated
the distribution of thermal stress in the neighborhood of a penny-shaped
crack in an infinite medium. The prescribed temperatures on the upper
surface of the crack are identical with those on the lower surface. Using
the coadition of symmetry with respect to the crack plane, they educed

the problem to one of mixed boundary conditions on the surface of a semi-
infinite solid. The same problem was also treited by Deutsch [4]). The
case when the thermal conditions are applied skew-symmetrically to the crack
surfaces was considered by Florence and Goodier [5]. The present paper
deals with a class of thermoelastic problems with cracks of more general
shapes which include the circuiar cracks in [3-5] as special cases. It
should be pointed out that the effects of both inertia and coupling between
temperature and strain fields are neglected in the aforementioned works.

An effective way of solving three-dimensional boundary-value problems

is to construct the general solution in terms of certain arbitrary func-
tions dictated, in part, by the appropriate field equations and, in part,
by the topology of the region of interest. These arbitrary functions are
then determined such that the boundary conditions of the problem are ful-
filled. This is precisely the approach adopted in the work to follow.
With the aid of harmonic functions, a general solution of Navier's equa-
tion including thermal effects is obtained. By restricting the analysis
to problems with cracks, stress and displacement expressions are derived
for two types of problems, one of which concerns with stress systems

which are symmetrical about the crack plane and the other with skew-
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symmetrical systems. In the former cas., the steady-state teinperature field
for an arbitrary region of exposure (or region of the crack) may be deter-
mined from the Newtonian potential for a disk in the form of the crack plane.
For the purpose of :V,ustration, detailea solutions in ellipsoidal coordi-
nates are obtained for the problem of heat applied to the surfaces of an
“elliptically-shaped" crack.

Since the practical aspect of this paper is to establish a criterion
of fracture for cracks in thermally stressed bodies, an examination of
the stress field in the vicinity of the crack border is pertinent. The
local stresses are found to have the same functional relationship and
inverse square-root singularity as those obtained in isothermal elastic
bodies subjected to surface tractions [6]. The significance of this result
is that the Griffith-Irwin theory of fracture [7], originally developed for
bodies maintained at constant temperatures, may now be extended to predict
the cnset of rapid crack propagation caused by thermal changes. More
specifically, stress-intensity factors kj(j=1,2,3), which govern the sta-
bility behavior of cracks, are computed and shown in curves for the cases
of thermal conditions applied symmetrically and skew-symmetrically to the

faces of an elliptical crack.

Fundamental Ecuations of Thermoelasticity

When the influences of both coupling and inertia are disregarded, the
general thermal-stress problem separates into two distinct problems to be
solved consecutively. The first is a problem in the theory of steady-
state heat conduction which requires the temperatures T(x,y,z) at every

point of the body to satisfy the Laplace equation in three-dimensions:

v2T(x,y,2) = 0 . (1)




Once the temperature distribution has been found, the resulting displace-
ments and stresses may be obtained, respectively, from the Navier's dis-

placement equation of static equilibrium
+
T:%U vv.u + v2u = 2(%:%;)aVT. (2)
and the Duhamel-Neumann stress-displacement relation

2
o = 7 + w7 + 755 [vvu - (1)eT] 1. (3)

in which u is the displacement vector, ¢ is the stress tensor and I is the
isotropic tensor. The gradient and Laplacian operators are denoted by v

and v2

» while y, v, and a designate the shear modulus, Poisson's ratio,
and the c:evficient of linear expansion of the solid whose mechanical and
thermal properties are assumed to be isotropic and homogeneous.

If x,y,z stand for the Cartesian coordinates, the solution of eq. (2)
for three-dimensional problems with geometric discontinuities on the plane

z = 0 takes the form

U= g W, yr = R 4y, (4)
where
2 3 1,1+
v = 0, v = 0, 3£ = S(TDaT. (5)

and the vector displacement potential ¢ has components ¢,, dys and ¢,.
In eq. (4), v** is the scalar displacement potential and y the thermo-

elastic potential. Hence, the dilatation becomes

a*
AR 3¥ : (6) a
and the condition of equilibrium, eq. (2), requires that %'
-6 - g




V.0 + 53 [ (3-8)y** - y ] =0. (7)

For T(x,y,z) = 0, the above expressions reduce to those given in [6].
Using eqs. (3), (4) and (6), the components of the stress tensor o,

in terms of ¢ and y*, may be obtained:

& * = * 2ok

gk = 37 (o) ¢ gy (g 935 233 3+ 2 5 (82)
sz - 3 e m 7 32'['* b
n X (¢z+w * Y 22 axoz (8b)
1 2.4

;!i ='%7 (o,49%)+ §;1.+ 2z gyaz ' (8¢)

For the purpose of discussing symmetry conditions in the section to follow,

the other stress components oyy, oyy, Txy are not of immediate interest.

Thermoelastic Problems with Planes of Discontinuities

In order to avoid unnecessary complication in the analysis, the surfaces
of the plane of discontinuity or crack at z = 0t are taken to be free firom
applied normal and shear stresses, since the method of solution when there
are such applied stresses has already been treated in [6,8]. Moreover, the
complete stress solution can be split up into two parts, which may be con-
sidered independently. The first part deals with the application of surface
temperatures that are the same on both sides of the crack and the second

, +
considers the case where the temperatures on the upper surface, z = 0 , of

the crack are equal and opposite to those on the lower surface, z = 0 .
The corresponding stress systems will be referred to as the symmetrical part

and skew-symmetrical part, respectively.

In the symmetrical part of the problem, the stresses and displacements,
induced by thermal changes, will depend upon the variable z as follows:
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u, v, o

xx* %yy* 92 : even in z (9a)

Wy T, Tya ; odd in z (9b)

These functions are required to be continuous outside “he crack region on
the plane z = 0 and the odd ones shown in eq. (9b) must be zero on such a
plane. Furthermore, if the crack surfaces are frze from applied stress,

then o, = 0. In view of symmetry, the condition <

- Tyz = 0 must hold

everywhere on the plane z = 0. Hence, eqs. (8b) and (8c) give

a - -
o) + 22 =0, 7= ¢ (10a)
a_ * by - = ;
sy (6 +0%) + 2 =0, 2 = 0. (10b)
At this point, it is convenient to introduce a harmonic function f(x,y,2)
such that both eqs. (7) and (10) are satisfied, i.e., by letting
of . [T 3
o, = (1-2v) 5+ [ 3% dz . (11a)
z
of * 3
¢, = (1-2v) 35 + [ 3%‘dz . (11b)
Y z
_ of of
6, = =2(1-v) 57 , v** = 37 . (1c)
where
2

vof(x,y,z) =0 .

The 1imits of the integrals in eqs. (17a) and (11b) have been chosen to
satisfy the condition of regularity of the displacement at infinity. It
follows that the displacements and stresses in the solid may be expressed

in terms of two real harmonic functions f(x,y,z) and w(x,y,z). They are
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N
u=(1-2v)%+j:%fdz+z-g% : (12a)
v =(1-2v) af 4 jw M g, 4 7 8F (12b)
oy Z 3y oy
W= =2(1-v) %£-+ 2 %; (12¢)
and
o 2 2 22 2
xx . 9°f 9°F 4 38 -2 9% 2 F 13a
M ayZ jz 2t iz Gilge)
o 2 2 w 2 2
yy .o f 3 f d _ 5 9y 3 F
2u 3}2'+ 2o o & jz ay z - 25>+ 2 ?yZ Gitzb)
g 2
2z _ oF 3¢F
u ez | 2 azZ ()
e (1o2v) 264 2%y dz 4z 2 (13d)
M axay ', 9xay axay
“xz _ . 3%F 1
s = g O 3e
2u z axaz (13€)
Tyz _ _ 3%F
.ZUL- Y4 -a-y-a-—z- . (13f)
in which
aof
F = a—z + /.
Similarly, the skew-symmetrical part of the problem may be formulated
by having
Us Vs Oxxs Oyys Oz7 ; 0dd in 2z (14a)
W T, Ty ; even in z (14b)

to be continuous across the plane z = 0 with the exception of the crack
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13
"
region. The odd quantities in eq. (14a) must again vanish on the plane of ‘—
continuity. On the crack surfaces, Tz = Tyz ° 0. Note that in the case
of skew-symmetry o, = 0 on the entire plane of z = 0, i.e.,
= (v + 30x + Ey_ : (15)
X
Eliminating the function y by means of eqs. (7) and (15) yields
a¢x a‘p**
22t 2 (16)
Now, Tet g(x,y,z) and h(x,y,z) be two harmonic functions related to ¢, and
¢y by
3 3h
0 = 20-) 37+ 0y = 2019) 37 - (17)
where
2 - 2 -
vég(x,y,z) = 0, v h(x,y,z) =
It follows that
=23, 3h
w** ™ + ay . (]8)
and
0, = ¥ - (1-2v) y** . (19)
In a straightforward manner, the displacements are found as
3 3G
u=-2(1-v) 3o+ 232 (20a)
z!
3h 3G
v=-201-v) 57+ 25y (20b) g;
h 36 o
w=-2(1-v) (-9-+ Ny, G+ 2z — > (20c) 1
-10 - ?




and the stresses are

o 2 2

k= 2ly) 2o 2842 25 (21a)

W w p(1y) BL L p 6, , 8 (21b)

u AXdzZ 3z yZ

22 _ . 2%G

T 257 (21c)

Txy 3,39 , 3h 226

2w - ) eyt t sy e

XZ _ ('I 3 a9 a_h. +_3_(i+ ——azG (2] )

B V) ey Gy - fx 2 ez €
2

V2 d_(3h _ 29y 4 36, , 3% _

2u (1-v) X (ax ay) g Ay e dysz bl

where
.39  3h
G=3x*taytyv - (22)

The above formulation places no restriction on the geometry of the
planes of discontinuities. However, for the sake of definiteness, the sub-

sequent work will be concerned with a plane crack in the shape of an ellipse.

Temperature Distribution in an Infinite Solid

Consider the problem of an infinite solid the interior of which is ex-
posed to uniform temperatures over a region occupied by the ellipse

2 2
%2 + %g =1, z=20

Hence, it is expedient to sclve this problem in ellipsoidal coordinates
(e,n,z), which are related to the rectangular coordinates (x,y,z) of any

N




point by [9]

a2(a2-b2)x2 = (a2+g) (a+n) (al+) - (23a)

b2(b2-a2)y2 = (bZ+g) (b%+n) (b2+c) . (23b)

a2b222 = gng . (23c)
where

>t 303n32 -b2 2T 2 -a2

In the plane z = 0, the inside of the ellipse is given by & = 0, and the out-
side by n = 0.

Let the temperature distribution T(x,y,z) in the solid to be an even
function of z variching at infinity. The boundary conditions of interest

are

Ti=Els & & =0 (24a)
aTz =
= 0 , n=0. (24b)

where To is a constant. The solution of this problem is well known since
the temperature T(x,y,z) is equivalent to the velocity potential of a per-
fect fluid passing through an elliptic aperture of a rigid partitions.

Thus, it can easily be shown that

T(X,y,Z) = - ﬂET'ET fg 76% = -TO ﬁf" C (25)

5See, for example, [9], p. 150, eq. (1).
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Here, K(k) is the complete elliptical integral of the first kind with
argument k2 = 1 - (b/a)2 and

Q(s) = s(a+s) (b2+s)

The variable u is associated with the Jacobian elliptic functions snu,
cnu, ---, and should not be confused with the x-component of the displace-
mant vector u. The relationship between u and the ellipsoidal coordinate
g is

a2 (S _uy2 _ -2
(Sn u) a (sn~cu-1) .

From eq. (25), the temperature gradient may be computed:

oT . To  [nz(a®+) (b2+£)]'/2
T () I oV (19 ' (26)

On the plane z = 0, eqs. (25) and (26) provide the correct boundary con-

ditions as
2 2,-1/2
2 = e T ol =
T =( : %% = ¢
U - =
t".lo m)' »n=20 L 0 ,n=0.

Substituting eq. (25) into the third expression in eq. (5) gives

= - (1Y) %ﬁ-{-g)-f (27)

The explicit expression of y(x,y,z) is not required for this part of the
problem. Terms containing the derivatives of y(x,y,z), such as those in

gs. (12) and (13), will be found subsequently.
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If the elliptical region of exposure is maintained at a uniform tem-
perature gradient Q,, then the temperature T(x,y,z) is an odd function of

z. The boundary conditions are

n
(o]

'—‘ 'Qo ’ 5 (283)

0Z

T=0 s N

1}
(o]

(28b)

Aside from a multiplying constant, T(x,y,z) is identical with the velocity
potential for axial flow past an elliptic disk in an infinite f]uidG. From

this hydrodynamical analogy, it is found that

2 -
T0y2) = B8 - 2 sHGT = ety BBt gu)) .z . (29)

where

u
E(u) = [ dnt dt .
0

and E(k) is the complete elliptical integral of the second kind. Using eqs.
(28) and (5), the thermoelastic potential can be determined from the con-

ditions

which can be written in the equivalent form

bsee [9], p. 144, eq. (8).
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v = H(x,y) , £=0.

The function H(x,y) may be considered to be any particular solution of the

equation

2 2
3¢H 4 3%H _ (1tvy aQg
T Al e

Furthermore, if H(x,y) is sufficiently smooth, a suitable solution for the
thermoelastic potential may be taken in the form of the Newtonian potential
of a simple layer with a continuously differentiable density. Without going

into details, it can be verified that putting

2 . x2 2 2
Wx.y,2) = (1) -g-‘nggau;’z‘g+ Pt e (30)

into oT = 2(}5%) %%-results in eq. (29).

Having obtained the thearmoelastic potentials given by eqs. (27) and

(30), a more detailed treatment of the thermoelastic problem is in order.

The E1liptical Crack Problem

Let the surfaces of a flat elliptical crack in an infinite solid be
opened by the application of uniform temperature T, and temperature gra-
dient Qy as described in the previous section. In the absence of mechanical
and thermal disturbances at sufficiently large distances away from the
crack, the displacements and stresses are assumed to vanish as z approaches
infinity. From the knowledge of y(x,y,z) or its derivative with respect
to z, the complete solution of the present problem requires the evaluation
of one function f(x,y,z) for the symmetric part and two functions g(x,y,z)

and h(x,y,z) for the skew-symmetric part.
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Suppose that the prescribed temperature are constant across the upper <

surface of the elliptical crack and are exactly the same as those across

the lower surface given by eqs. (24). In addition, the corresponding

mechanical conditions are

Thus, egs. (12c) and (13c) give

oF _ _
E- 0, E - 0 (3]3)
%; =0,n=0 . (3]b) :

An appropriate form of the function f(x,y,z) is [6]

o 2 2 .2
£(x,y,z) = 1/2 A X°_ 4 + 20 ) s _ 32
(x,y,2) / fg (-a'm 5.5: E )',Q-Gy (32)

which satisfies eq. (31a) and the constant A is obtained from eq. (31b)
given by

2
S Gh )

To find the displacements u and v, it is necessary to evaluate

32w _ 1+v aaTq

X
axaz  ‘l-v’ * 8K(k) ° h%(a2+£)/0(£5

obtained from eq. (27). Here,
2« glles)
1 £
Upon integration with respect to the variable z yields

3y . _(Ity)  aaTg Z xdz . 34
3X (]-v) 8K(k) ‘2 h%(a2+g)JU(27 (34)
= 76 -




where the variable of integration may be changed from z to £ by the re-

lation [9]

»

dz _ 2¢ dg
Wz

Introducing s as a dummy variable of integration, eq. (34) becomes

3 . _(ltyy asTo f‘” s ds .
3x 1-v  4K(k) £ (a+s) z(s)AQ(s)

where z(s) is determined from

2 2 2
X, ¥ L2t 4.
al+s b2+s s

Integrating eq. (34) once more gives

oo (1t aalo L Tl (e
fz Nz = (2. wly fz [ f& J(s3x,y) ds ] dz .

in which
_ x2 i y2 12
) _ at+s  bl+s
J(S,X,,Y) = , 3/2 ) ]/2
(a%+s)  (b“+s)

Since integrals of the form

2]

fw dz [ A(s) ds
z £

may be evaluated from the formula

-fc° dz J’°° A(s) ds = fm [z - z(s)] A(s) ds .
¥ 4 13 £

-17 -
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eq. (36) takes the form7

f Baz= Y . iy x 2 L-L) . (39a)
where

Iy = j: (a2+s)'3/2 (b2+s)'”2 [1- ?fo_s - Bﬁ—s]-]/z ds .

L, = f: s]/2 (a2+s)-3/2 (b2+s)-]/2 ds .

In a similar manner, it can be shown that

) = (14v aal
Iz 5¥'dz (T:;) ] 3%?%7'y [zI3 -1,] . (39b)
where
2, =12 2 3/2 x2 -YZ -1/2
I3 s Ig (a +S) (b +S) [ ] - aqs b£+S ] d
A §/2 (a2+s)-]/2 (b2+s)-3/2 ds
11

The displacements in the plane z = 0 are found a58

"The evalu. « ion of eq. (39a) is intimately related to the elliptical punch
problem which was solved only in part by Green and Sneddon [8]. Their solu-
tion can be completed by following the steps going from eq. (27) to (39).
Incidentally, a complete solution to the elliptical punch problem has been
given by Galin [11].

8see Appendix (1) for the results of integrals.
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. A 2 5151 sds
- R o R o
- abk ((] -2v) (’7 [u-E(u)] + E%E%'[E(u) - k2] l : (40a)
v=-& v 0- 2\,)b2] ds E(k)f sds
b2 ¢ BZ) AT * k() /, ) AT
= - By [ 0-29) TeQ) - &)y - iF L s enyy
k2 Y ( v u ) U -
'—%F} [u-E(u) + k2 . Shu Sy ,. (40b)
| = 2(1-v) A Lim [ ]
| A AL o
—11—21—-L1m ( Z [§ﬂg_gﬂg - E(u)]’ . (40c)
Z2-0 cn u

Now, let Ugs Voo and W, be the displacements of the crack surfaces. Then

as £ » 0:

snu->1,cnu->0,dnu-~ 9- E(u) » E(k) .

and eqs. (40) simply reduce to

- = 2Ab E % =V K k - 2
g = - Zby £(k) x [ (-2) [_(_).E k)13 + (@) _L_K(k)_) hje (41a)
_ 2 K(k)
Vo= - B ey [0-20) Id? - By« - B ) (41b)
4(1-v)A
Mg = S (] fz - Yb-z) : (41c)

In the special case of a penny-shaped crack, a = b, E(k) = K(k) = =/2,
eqs. (41) may be further simplified as

-19 -




Y 1+v)al 2 2(1+v)aaT
[vg] - . {*vlalo [;‘,] W = 2vlale o7 (42)

where p = r/a and rl = x2 + yz. The normal component of the displacement

W, of the crack surface agree with eq. (90) in [3] only when the integrals
in [3] are evaluated properlyg. As a consequence, the variation of wy with
p shown by Fig. 3 in | 3] should also be changed accordingly.

The problem of a uniform steady heat flow disturbed by an insulated
elliptical crack is equivalent to the one of assigning uniform temperature
gradients to the crack surfaces. The thermal conditions are shown in eqs.

(28) and
T =T =0,€=0;u=v=0,n=0.

must be satisfied on the plane z

0. From eqs. (20a), (20b), (21e), and

{21f), these conditions may be put into the forms

32 3_(3g _ dhy, _ 3y -
ng *Y ay (ay x “ax -0 {ea)
32h 5 (dh 3gy _ % , -
222 TV %x (ax ) ay) y 0. $E

9The corrected expressions in Olesiak and Sneddon's paper [3], p. 253, should
read as

w(n) = 2(]+:)aega (sin n ;Zn (oo ny (88)

with

t
- 28 _ 26
IOSQ(S)ds-"—aﬂ[l-ﬂ-tZJ, =20
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and

W(p) = 22 [ (1-p2)V/2 109 (1 + /T50) ]

Hence,
Wy = Lo (1-p2)1/2 (90)
where
LO=M 3 (9])
m

and e, corresponds to T, in the present work.

where the right hand side of eqs. (43) are known quantities from eq. (30),

and

M. . 3h_g ,n=0 (44)

Both g(x,y,z) and h(x,y,z) are even functions of z. The character of eqs.

(43) suggests that the problem can be readily solved by putting]0

9 - (8 __ 5,3
Y (x 3z ¢ ax) Ay (45a)

)
az-Waz- 8. (45b)

Equations (45a) and (45b) represent the velocity potential of a rigid el-

liptical disk rotating about the y-axis and x-axis, respect1ve1y]]

101¢ H(x,y,z) is a harmonic function, i.e., 2H(x,y z) = 0, then (x — -
z 2_) H and {y 32— 3 -2 2_) H are also harmonic.

11See [10], p. 5.
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By virtue of egs. (45), eqs. (20) render

u = -2(1-v) x gg +2 _[ r+2(1-v)A ] (46a)
v=-2(1-v)y—+z—[r+2(1 vl , (46b)
w= 2(1-v) y - (1-2v) T + 2 gg . (46c)

Equations (21) may also be expressed in terms of the functions A(x,y,z) and

2(x,y,2):
°xx 3 aT a2r 320
= 2(1-v) 37 az (yay+ 1) e-257+z[5zZ-201~) 2] . (47a)
Sy - 2(7- - ar 3T _ o(1- 32A b
2u 2(1 v) (x o= +1) A-2 3.i.+ Z [3§2' 2(1-v) ] . (47b)
Oz2z _ 321
T Z 257 (47¢)
U ENE A 21+ (1) (140} (47d)
2u -v) 57 (x ay T Y ax) T Zaxay LT B < .
'XZ = (1-y) 3 A _ an a +1
22= () & (x 8-y 2 4 2 (z2+1)T
a 00
+ (1-v) W[ [ z(a-) dz ] . (47e)
Y4
WZ o (1-y) A (y 22 _ 3/\ a_
2u (1-v) X (y x X ) My (z 3z thr

- (1-v) -3733}-[ fz 2(r-0) dz ] . (47f)

where the following contractions has been made:

A 30 30
\b+A+xax+yay+zaz+"—2'[f z(A-0) dz ]

From eqs. (30), (43), and (45) follow then

= 22 &




3 - -]
xzy e (3 (x & - you —x—g-yz[jzz(lx-n)dz]

- BBk e=0 L (asa)

3 oo
3 ? ) 30 9
zWaz-z3y a+y (ﬁ()’ﬁ'xay) oy L] z(a-0) dz ]
y4

=y - PRy gm0, (a8)

Taking A(x,y,z) and 9(x,y,z) in the forms

A B o
[ ]='I/2[ ]IE (E’Z‘?E+B¥.%+£?_-])m (49)

2 c

the constants B and C may be solved from eqs. (48), which yield

Mgz - mqy ¢ = MP2 - 2Py

B = ’
P192 - P2q1 q1P2 - q2Py

(50)

The constants Pjs and mj (j=1,2) are

P = - HbL+ Sl () - k() + 0 T2 E(K) - K(K)
- (a%b2)K(k) - 2a2E(k)] 5
a¢ - bl
= _w 24b2)K(k) - 2aZE(k
a = [ E() - kK + (220l 2atE(K)
= T+v K(k by 2
ne G ERIE-1D
and
212 2
p, = sz LK - (&7 )+ KO- 22 B




2
ay = EbL+ Lo [ kk) - @) E(K) + v [ K(K) - E(K)

2+4b2)K(k) - 2a2E(k
; (a ;2(_)b2 a (1”,

= (1Y . —Sntl-u—H]. :

The solution is essentially complete and is a complicated function of the

material constants and the geometry of the problem.
A straightforward calculation employing eqs. (46) gives the displacement

<:omponen1:s]2 for 2 =0

( 3
u (Bx

= -2(1-v Lim . 2 Sou doy _ g 51
4 (1-v) &brg r i ekl OF (51a)

v C
kyJ

a3k = [ u-E(u) ] {( (-]If—:’)) %%?—%?9- - (1-2v)

S 2 (e i
L3+ (-5 @0 1) +k2

2
i {(a}f—:)z—g-(%ﬂ-(l-zx))[ 3B+ 2C + (b (B C) ]}{% [ E(u) - kz.

snu_cnu ] - } 2

Tdn u

- {azk2 [ (H") 222‘; - (1-2v) B ] + (1-2v) (B-C) xz} u

+ (1-2v) (B-C) x2snu cnu dnu . (51b)

121he results of the integrals are tabulated in Appendix (2).
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In the same way as before by setting ¢ = 0, the displacements of the crack

surfaces are found:

(u,) Bx

B R NN Ed
LVOJ )

2% = [ K(K) - E(K) ] ([(a}f—:) %‘é%h - (1-2v)

_ 23 (8- 24 ¥
[38+0-5) (BC)]]x+f§’.

((‘*V)%%h (1-2v) [ 38 + 2¢ + (&) (BC)]’

2 2
[ @ EK -KK) I .y
2
. (a2k2 [ (%f—\‘:) Z‘E’g - (1-29) B ] + (1-2v) (B-C) x2 ) K(k) . (52b)

In the 1limit as a = b, eqs. (50) shows that

B=C=- (Y. —Q&

Because of rotational symmetry of the circular crack problem, the displace-

1/2
ments u and v may be combined as (ug + vg) to give the radia’ compo-
nent U
3 o IR RS - S (53)
2 TWjatalg A P - Yt e e o

= 75 =




The normal displacement w, is13
1-v wo _ ] et 2 _ & s
(m)-azgo—o 7 [ (=) 0 3(2v)],o<1 . (54a)

and

. P -5 ( [ (1-9) o2 - § (2-9) 1 sin”! ()

- (1-v) vVp2-1 ’ p>1 . (54b)

Eqs. (53) and (54) check with eqs. (26) and (27) in [5], respectively, when
the expression for wy in [5] is corrected. The temperature gradient Qg
corresponds to t in [5].

The computation of thermal stresses will be considered in the next

section.

13ror p > 1, Wy in Florence and Goodier's paper [5] should be corrected.

1-v 1 (21 11.5.1
=121 F (dl151
(1+v) aZaQo 3 j:p 2’1 (2 72" 2)

s 200-2v) l_ P332 o
45 Jom 3 212222

where oFy (a,b;c;z) is Gauss' hypergeometric series. Moreover, these hyper-

geometric series can be reduced to elementary functions by means of Gauss'
recursion formulas [9] and some properties of the hypergeometric series.
The results are

b
1y = 85 (p2 2) sin! (%) - H2-T ]

There is also a misprint in [5], eq. (27), where the factor n/4 should read
as 1/4. - 26 -




Crack-Border Thermal Stresses and Stress-Intensity Factors

A knowledge of thermal stresses in a small region ahead of the crack is
essential in the investigation of the stability behavior of cracks. For in-
stance, the Griffith-Irwin theory of fracture [7] is based upon the concept
that the onset of rapid crack extension occurs when the magnitude of crack-
border stress field or simply the stress-intensity factor reaches some crit-
ical value. For a given configuration of the crack, this value will in
general, depend upon the properties of the material such as the shear modulus,
Poisson's ratio, and the coefficient of thermal expansion, etc. Hence, at-
tention will be focused on the determination of stress-intensity facters
kj(j=1,2,3), where each one of the k-factors refers to a particular mode of
crack surface displacement. The elliptical crack problem will be used as an
example.

The "opening mode" of crack extension, governed by ky, arises in the
symmetrical problem. For the mere purpose of finding ky, it suffices to cal-
culate o,, in the plane z = 0, outside the elliptical crack region. By way

of egs. (32) and (13c)]4

®  (2s+a+b2)ds ,

Wz jg (a2+s)(b2+s)/Q(s)

A( 172 % 2
£ / (al+¢) / (b2+¢)

(]+\)) . aaTQ

jw ds
T-v 4K(k) £ ;sts

1+v. aTg 1 ab® snu cnu
= () [ - E(u) + —
1-v 2 ( E(k) 51/2 (a2+s;)]/2 (b2+g)]/2 dnu ]
u -
+m)-) »,n=0 . (55)

4gefer to Appendix (1) for solutions to integrals.
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In the neighborhood of the crack border, the ellipsoidal coordinates g

and ¢ have the 1imits]5
-1/2
g = 2 abr (a2 sin2¢ + b2 cosz¢) ; (56a)
z = - (a sinZ¢ + b2 cosly) . (56b)

which are valid for n = 0 and r << 1. The small distance r in the plane
Z = 0 is measured normal to the crack border and ¢ is the angle in the
parametric equations of an ellipse. Substituting eq. (56a) into (55), the

expansion of o,, for small values of r (or &) is

1/4 1/2
= (MvyuaTofb (22 (i024 4 2 cos? l+0 57
S,y (]_v) £ 2 (a€ sin“¢ + b cos¢) ) (r ) . (57)

The stress-intensity factor ki can now be extracted from eq. (57) as

ky = (JI_*_%) %E(az sin2¢ + b cosqu)]/4 sa>b . (58)
The variation of k] with the angle ¢ is plotted in Fig. 1 for v = 1/3
and different values of the ratio a/b. A glance at the curves shows that
k1 is always greatest at ¢ = 90°, i.e., the intersection of the crack
boundary with the minor axis of the ellipse. Thus, crack propagation, if
it occurs, would first take place at the point (0,b,0), and tend to produce
a penny-shaped crack. This is a brief physical interpretation of the

Griffith-Irwin concepts of fracture.

15¢e [6], eqs. (52a) and (55).
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The remaining strength of a solid whose continuity is interrupted by
a circular crack may be estimated from eqs. (57) and (58) by setting a = b

and g = r2 - a2, Consequent]yl6

%2z _ (14+vy alg (2 L'
i e el G p>1
and (59)

= (1tvy 2ualg
k] (1-v) T a

The stress-intensity factors k, and kj correspond, respectively, to the

"edge-s1iding" and "tearing" modes of fracture. Their evaluation calls

for the expressions t,, and Tyz S z+0. It is found from eqs. (47e), (47f)

and (49) that!’

1/2
Txz _  (al+£)(al+r) 1+v, ab%aQg y . ds
2u t a2 _ b2 ] [ (]-V) 4E(k) + B+ v ] fg (a2+S) m—)-s
S (2s+a’+b?)ds _ , [ s ]
AQle) ¢ (a2+s)(b2+s)/AQ(s) ¢ (b2+s) /()
2v(b2+z) 9315.1/2 1--5-).¢ Egié e B ot
" T7Z (e-0) (b2-ad) hE (b2+s) ( a2+e) (a2+5) ( b2+s) ]
+y (B-C) [ s -0 . (60a)

¢ (a2+s)(b2+s)/Q(s) | )

16The factor of a/3 should be taken out of eq. (92) in [3].
17The integrals are tabulated in Appendix (2).
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(59)

60a)

1/2

(b2+€) (b2+7) 1+v, abZaQq ® ds
. C B
Zu =L b2 - a2 ] : (1-\)) 4E(k) *Gi sBi IE (b2+s ) /Q(s)
i 2 _(2s+al+b2)ds ., (T __ds

[ Ale) "¢ (a2+s)(b2+s)AQ(s) ’ Ig (a2+s)Q(s) ]

20(a24c) ﬁ; R T N
T (e () | ° e K 2 e U
SV (B-C) [ s ds , =0 . (60b)

¢ (a2+s)(b2+s)A(s)

where B and C are given by eq. (50). Near the crack boundary, eqs. (56) may
be applied to simplify eqs. (60):

"xz _ 2 cos ¢ v b% sin ¢
B-C
2u ab ([ ( ] (a2 s1n2¢ + 5? cosz¢)
1/4

/er

yz 2 s1n b ’ v a2 cos ¢
C -8B
2q ( [ ( ] (a2 sin¢ + b2 cosZ¢)

1/4
L ) (a2 sin% + b2 cosZp) (r1/2) (61b)

y2r
Before kj(j=2,3) can be found, the following transformations

Ty = = Tyy SIN B+ Tyz €OS B . (62b)

should be performed to obtain the normal and tangential components of the

shear stress. In eqs. (62), B is the angle between the x-axis and the line
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normal to the crack border in the plane z = 0. It is not difficult to show
that for a given value of ¢4, i.e., a fixed position on the crack boundary,

g8 is known either from

-1/2
a sin ¢ (a2 sinZ¢ + b2 cosZg)

sin B

or

-1/2

cos 8 = b cos ¢ (a2 sin2s + b2 cosZg)

Putting eqs. (61) into (62), t.., and T4, My be written as

nz

z= gle0 (r/f) Ttz Bro(r/?

or
where
Su (a2 sinly + b2 cos?e) (B cos? 2) (63a)
ko = - a¢ sin¢¢ + b cos¢¢ B cos¢¢ + C sin%¢) . 63a
2 vab

- B -1/4
k, = &JLSI—XJ-(aZ sinc¢ + bZ cosZ¢) (E-B - E-C) sin ¢ cos ¢ . (63b)
3 yab b a

It is worthwhile to mention that in the skew-symmetrical problem of an
elliptical crack, there exists a combination of "edge-sliding" and "tearing"
novements of the crack surfaces as both k, and kg occur simultaneously.
Hence, the shape to which the crack would grow will depend upon a function
of k2, k3 and is no longer a priori evident as in the case of the opening
mode. For v = 1/3, the values of ko and k3 against ¢ are shown in curves
by Figs. 2 and 3. Note that k, varies with ¢ in a manner similar to k,
as in Fig. 1. Inspection of Fig. 3 reveals the interesting fact that the
four points at which the crack border intersects the major and miner axes

are under the action of “edge-sliding" type of displacement only, since k3

- 3 =




vanishes at those places. The maximum values of k3 shift as the ellipticity

is changed. This is clearly illustrated in Fig. 3.

In the degenerate case of decreasing ellipticity, i.e., as b+a, egs.

(63) reduce to

3/2
= (Jtvy 2 =
kp = (=) &42flo 37 =0 (64)

and the "tearing" mode disappears completely. This result is in agreement
with that obtained by Florence and Goodier [5]18.

It should be emphasized that the angular distribution of the three-
dimensional thermal stresses near the crack border is found to _be the same
as those in an elastic body undergoing deformation at constant tehperatures
(6]. The two-dimensional case was discussed by Sih in [12]. In retrospect,
this justifies the application of the Griffith-Irwin theory of fracture to

cracks owing to thermal disturbances.

18
The sum of the normal stresses, (g, §°X y ;5], on the
plane of the penny- shaped crack is 1ncorr$ct gan b¥ seen rom eqgs.

(47a), (47b) and (49) in the present paper that

2 2 2 1/2
B o )+~ 12 e+ 000 110+ B
%2 W2 y2.-1/2 )
+(]+V)(B'a7+c‘bL2)( _g‘%{) » £ =0

and hence, for a = b, the above equation becomes

+ 0

Lovy (900 oydas0 L 1 ) ez e L (e ] i
1+ 4 aQ,a , L) 3 ) 1w

which is the revised form of eq. (28) in [5].
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Remarks on a Class of Boundary Problems

A more general approach to the problem of finding the steady-state
temperature field in ellipsoidal coordinates will be considered. Once the
structure of T(x,y,z) is known, a number of thermoelastic problems of
cracks may be solved by the method described earlier. For brevity sake,

discussion will be restricted to the symmetrical problem where

T(x,y,z) = T(xa.Ya = Z)

The formulation for the skew-symmetrical temperature problem follows in the
same way.
Suppose that the surfaces of an elliptical crack is thermally disturbed

with the following boundary conditions:

T=T(x,y) ,£=0 . (65a)
oT
-0 »8=0 . (65b)

which reduces to egs. (24) for T(x,y,0) = constant. A well-known solution

of eq. (1) in potential theory is [13]

Toysz) = [ [ WXa¥D gergy (56)
L

where

-1

-1/2
R = [ (x-x")2+ (y-y")2 +22 ]

and q(x', y', 0) is the density of a distribution of mass in the space
(x's y's 2'). The integral in eq. (66) is extended over the region occupied
by the ellipse x2/a2 + y2/b2 = 1. The requirement is that T(x,y,z) must be

sufficiently reqular at infinity. This is satisfied as

=38 =




T » R;] f £ q(x',y') dx'dy' , when Ry + =
where
Ry = (x2 + y2 + 22)1/2
Now, eq. (66) may be inserted into the last of eq. (5) and the result can be

integrated to admit the representation

1+v

v(X,y,2) = % (=) Jgf IZ q(x',y') log (R + z) dx'dy' . (67)

Apart from the factor & “ (1tv), eq. (67) is Boussinesq's three-dimensional

T-v

logarithmic potential for a disk in the shape of r, whose mass density is
q(x,y). While y(x,y,z) has continuous derivatives vanishing at infinity,

the function y(x,y,z) itself is unbounded as R +» = , since
v>[log (R+2z)]. [ [ a(x,y) dxdy , when R » =
L
The boundary condition, eq. (65a), can be satisfied by taking

T(x,y) = - q(x',y') dx'dy’ . 63
L 2n / fz [ (x-x')2 + (y-y')2 11/2 e

Integral of this type is used in the contact probleins of the theory of
elasticity, in particular, the problem of a perfectly rigid elliptical
punch on an elastic half-space [11].

In ellipsoidal coordinates, the temperature field may be taken as

o

T(x,Y,s = w —d—_ .
(x,y,2) fE Q()»’OTT (69)

where

2
of$) =1 - s
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and ¢(w) is any twice differentiable function in the interval (0,1) with
finite one-sided derivatives at the boundary points of the interval. Note

that eqs. (65) are satisfied by

1/2
1/2 « 2 2
3T _ 2 , ds [ nz (ac+e)(bete) ] (
—_—= . = w) —— - 2 ¢(0 . (70
az ab ) fg e $YQ(s) s ab (g-n)(&-z) =
and
o 2 2
T(x, = 1 - X - e ds . 70b
(x,y) J'O ¢ ( s b2+s) VO] (70b)
2

It should be pointed out that if #(w) is a polynomial of degree n in x
and yz, then T(x,y) will be another polynomial of the same degree in x2
and y2.

Alternatively, eq. (69) may also be used to satisfy the boundary

conditions
q(x,y) ,&£=0 (71a)
T
3z
0 s, n =20 (71b)
By taking q(x,y) to be a function of the variable
2 2
Z:]-L-L
a2 bl
then eq. (71a) gives
b (Y q(z) dz
o(w) = - 2 72
( 21rfo Vo2 (72)
In particular, if
n
q(Z) =q4 2= . (73)
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eq. (72) becomes

_ abgg T (n+1) n+1/2
¢(w)"2/“—r(n+g) . [»U(S)]

The temperature distribution may also be computed as

= _8bgg T L+1) n+1/2 ds
T(x,y,z) o _ f [ w(s) ] T (74)

For n = p - 1/2, where p is a positive integer, the integrand in eq. (74)
can be expanded and the integration may be carried out term by term!9.

A few cases of eq. (74) are
(@) n=-1/2, eq. (74) reduces to eq. (25) with
% = BRIy
(b) The integral corresponding to n = 0 has yet to be evaluated.

(c) The temperature T(x,y,z) for n = 1/2 is

]an the special case of a = b, eq. (74) can be integrated for all values
of n giving

I' (ntl 2(n +1)
'ﬂg—éﬁ_;_(") on+1) » 870

where

dt
1 O M
2n IO (dn t)Zn
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- . baoK(k 22 - JE(K) 1,2 1 @y EK) 2 =0 .
T Zﬁialzi;%(ak [ K(k)]x L& i 11y2],€=0

Conclusion

Three-dimensional problems of cracks in thermoelasticity have been formu-
lated. The displacements and stresses are expressed in terms of potential
functions, which are valid for planes of discontinuities bounded by smooth
curves. Of fundamental interest is the problem of a flat elliptical crack
whose surfaces are thermally disturbed. Exact solutions are obtained and
reduced to the 1imiting cases discussed by previous authors [3-5].

Several essential features of the stability behavior of an elliptical
crack, heated on its surfaces, are discussed in connection with the Griffith-
Irwin theory of fracture. The concept of stress-intensity factor is intro-
duced. In general, all three types of k-factors are present in structural
members undergoing thermal changes. Therefore, a criterion of fracture
will have to depend on a function of k;, ko, and k3 to reach some critical
value, say fcr at which unstable crack extension would start. The function

fer Must be determined experimentall;.
APPENDIX

(1) The following integrals are essential in the calculation of dis-

placements and thermal stresses:

(75a)
[u-E] , (75b)
a2 . a?-b%, snu cn u
[(F) E(u) - u - ( bz) oy [ (75c)
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0

s _ds =
IE (7Z2e0) T ak2 [E() -k2ul , (75d)

i T ae v B sty (75e)
- ds = [ (a2+b2) E(u) - 2 u - (az-bz) shucnui,
£ (a2+s)(b2+s)AQ(s) a5k4 b2 dn u
(75f)
s ds 2 [ (1 + ELE) E(u) - 5—3 U-snuchu
(a2+s)2/ (s 5 3 a3k2 k2 k2
.dnul . (75q)
. s ds 2 a +b _2 sn uchu
= E(u) + 2ne—— . (75h
¢ (a2+s)(b2+s)/Q(s) a3k2 [ (a2 b2) k2 () dn u ] (75h)

(2) For the skew-symmetrical part of the problem, it is necessary to
find

«© oo

[z .60 (xy,2)dz, [ z.q({x,y,z) dz
z z

where the functions A (x,y,z) and @ (x,y,z) are themselves integrals given

by eq. (49). Hence, integral of the type

. Y2,
a2+s b2+s

.;_;z[j( - 1) ]1dz . (76)

»’TT

is involved. Using formula given by eq. (38), eq. (76) becomes

1 Z s _ds
L (__+_.Y.__+._-]) o (77)
8 ¢ al+s b2+s s " AS)
From eq. (77) follows then
3_21.= lj (_?_+_.Y£_+.z_2-]) s ds _ijm s ds
ax2 2 a2+s  b2+s s (a2+s)/Q(s) £ (a2+s)2AQ(sy
(78a)
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; ) 3/2

71 _ s_ds 2 x2y ¢
i A bl 7 . (78b)
ax2ay £ (a2+s)(b2+s) AQTs)  (aérg)*/4(b24e) '/ ¢(g-0) (£-2)

3 p 32
I=-x[ s ds . 2 xy~ ¢ . (78¢c)
axay?2 £ (a2+s)(b2+s) QST  (a2+g)1/2(b2+£)3/2(g-r)(£-1)

Similar expressions for partial derivatives of I with respect to x,y,z

may be obtaincd for the computation of stresses and displacements. It is

now apparent that the solutions to the integrals in egqs. (78) can be ob-

tained from eqs. (75).
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Figure (1) - "Opening" mode of fracture
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Figure (2): "Edge-s1iding" mode of fracture
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